Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Biomed Eng Lett ; 14(3): 439-450, 2024 May.
Article in English | MEDLINE | ID: mdl-38645594

ABSTRACT

Purpose: Transscleral ocular iontophoresis has been proposed to deliver charged particulate drugs to ocular tissues effectively by transmitting a weak electrical current through the sclera. The electric fields formed are influenced by the electrode conditions, thus affecting the amount of particulate drugs delivered to the ocular tissues via iontophoresis. Computational simulation is widely used to simulate drug concentrations in the eye; therefore, reflecting the characteristics of the drugs in living tissues to the simulations is important for a more precise estimation of drug concentration. In this study, we investigated the effect of electrode conditions (location and size) on the efficacy of transscleral iontophoresis. Methods: We first determined the simulation parameters based on the comparison of the amount of drug in the sclera in the simulation and in vivo experimental results. The injection of the negatively charged nanoparticles into the cul-de-sac of the lower eyelid was simulated. The active electrode (cathode) was attached to the skin immediately above the injection site, while the return electrode (anode) was placed over the eyebrow. The drug concentration distribution in the eye, based on either the location or size of each electrode, was evaluated using the finite element method with the estimated simulation parameters. Results: Our results indicate that drug permeability varies depending on the location and the size of the electrodes. Conclusion: Our findings demonstrate that the determination of optimal electrode conditions is necessary to enhance the effectiveness of transscleral iontophoresis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00359-2.

2.
J Chest Surg ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584379

ABSTRACT

Background: Although the modified Blalock-Taussig shunt remains the mainstay method of palliation for augmenting pulmonary blood flow in various congenital heart diseases, the shunt must be carefully designed to achieve the best outcomes. This study investigated the effect of shunt configuration on pulmonary artery growth and growth discrepancy. Methods: Twenty patients with successful modified Blalock-Taussig shunt takedown were analyzed. Pulmonary artery and shunt characteristics were obtained using computed tomography scans. Differences in the baseline and follow-up diameter ratios and growth in the ipsilateral and contralateral arteries were calculated. The angle between the shunt and pulmonary artery, as well as the distance from the main pulmonary artery bifurcation, were measured. Correlations between pulmonary arteries and shunt configurations were analyzed. Results: The median interval time between shunt placement and takedown was 154.5 days (interquartile range, 113.25-276.25 days). Follow-up values of the ipsilateral-to-contralateral pulmonary artery diameter ratio showed no significant correlation with the shunt angle (ρ=0.429, p=0.126) or distance (ρ=0.110, p=0.645). The shunt angle and distance from the main pulmonary bifurcation showed no significant correlation (ρ=-0.373, p=0.189). Pulmonary artery growth was negatively correlated with shunt angle (ipsilateral, ρ=-0.565 and p=0.035; contralateral, ρ=-0.578 and p=0.030), but not with distance (ipsilateral, ρ=-0.065 and p=0.786; contralateral, ρ=-0.130 and p=0.586). Conclusion: Shunt configuration had no significant effect on growth imbalance. The angle and distance of the shunt showed no significant correlation with each other. A more vertical shunt was associated with significant pulmonary artery growth. We suggest a more vertical graft design for improved pulmonary artery growth.

3.
Adv Sci (Weinh) ; : e2401482, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554398

ABSTRACT

Over the past decade, molecular-switch-embedded memory devices, particularly field-effect transistors (FETs), have gained significant interest. Molecular switches are integrated to regulate the resistance or current levels in FETs. Despite substantial efforts, realizing large memory window with a long retention time, a critical factor in memory device functionality, remains a challenge. This is due to the inability of an isomeric state of a molecular switch to serve as a stable deep trap state within the semiconductor layer. Herein, the study addresses this limitation by introducing chemical bonding between molecular switch and conjugated polymeric semiconductor, facilitating closed isomer of diarylethene (DAE) to operate as a morphologically stable deep trap state. Azide- and diazirine-anchored DAEs are synthesized, which form chemical bonds to the polymer through photocrosslinking, thereby implementing permanent and controllable trapping states nearby conjugated backbone of polymer semiconductor. Consequently, when diazirine-anchored DAE is blended with F8T2 and subjected to photocrosslinking, the resulting organic FETs exhibit remarkable memory performance, including a memory window of 22 V with a retention time over 106 s, a high photoprogrammable on/off ratio over 103, and a high operational stability over 100 photocycles. Further, photophore-anchored DAEs can achieve precise patterning, which enables meticulous control over the semiconductor layer structure.

4.
ACS Appl Mater Interfaces ; 16(13): 16453-16461, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516695

ABSTRACT

Memristors integrated into a crossbar-array architecture (CAA) are promising candidates for analog in-memory computing accelerators. However, the relatively low reliability of the memristor device and sneak current issues in CAA remain the main obstacles. Alkali ion-based interface-type memristors are promising solutions for implementing highly reliable memristor devices and neuromorphic hardware. This interface-type device benefits from self-rectifying and forming-free resistive switching (RS), and exhibits relatively low variation from device to device and cycle to cycle. In a previous report, we introduced an in situ grown Na/TiO2 memristor using atomic layer deposition (ALD) and proposed a RS mechanism from experimentally measured Schottky barrier modulation. Self-rectifying RS characteristics were observed by the asymmetric distribution of Na dopants and oxygen vacancies as the Ti metal used as the adhesion layer for the bottom electrode diffuses over the Pt electrode at 250 °C during the ALD process and is doped into the TiO2 layer. Here, we theoretically verify the modulation of the Schottky barrier at the TiO2/Pt electrode interface by Na ions. This study fabricated a Pt/Na/TiO2/Pt memristor device and confirmed its self-rectifying RS characteristics and stable retention characteristics for 24 h at 85 °C. Additionally, this device exhibited relative standard deviations of 27 and 7% in the high and low resistance states, respectively, in terms of cycle-to-cycle variation. To verify the RS mechanism, we conducted density functional theory simulations to analyze the impact of Na cations at interstitial sites on the Schottky barrier. Our findings can contribute to both fundamental understanding and the design of high-performance memristor devices for neuromorphic computing.

5.
Surg Endosc ; 38(4): 2062-2069, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429574

ABSTRACT

BACKGROUND: We developed a novel drug delivery system called hyperthermic pressurized intraperitoneal aerosol chemotherapy (HPIPAC) that hybridized Hyperthermic intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosol chemotherapy (PIPAC). The present study aims to assess the feasibility and safety of HPIPAC system in a large animal survival model. METHODS: Eleven pigs (eight non-survival models and three survival models) were used in the experiment. The heat module in the HPIPAC controller circulates hyperthermic CO2 in a closed-loop circuit and creates gas-based dry intraperitoneal hyperthermia. Three 12 mm trocars were placed on the abdomen. The afferent CO2 tube wound with heat generating coil was inserted into a trocar, and the efferent tube was inserted into another trocar. Heated CO2 was insufflated and circulated in a closed circuit until the intra-abdominal and peritoneal surface temperature reached 42 °C. 100 ml of 5% dextrose in water was nebulized for 5 min and the closed-loop circulation was resumed for 60 min at 42 °C. Tissue biopsies were taken from several sites from the pigs in the survival model. RESULTS: The average change in core temperature of the pigs was 2.5 ± 0.08 °C. All three pigs displayed no signs of distress, and their vital signs remained stable, with no changes in their diet. In autopsy, inflammatory and fibrotic responses at the biopsy sites were observed without serious pathologic findings. CONCLUSIONS: We successfully proved the feasibility and safety of our novel HPIPAC system in an in-vivo swine survival model.


Subject(s)
Peritoneal Neoplasms , Animals , Swine , Peritoneal Neoplasms/drug therapy , Carbon Dioxide , Feasibility Studies , Drug Delivery Systems , Aerosols
6.
Biomed Eng Lett ; 14(2): 255-265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374912

ABSTRACT

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique for modulating neuronal excitability by sending a weak current through electrodes attached to the scalp. For decades, the conventional tDCS electrode for stimulating the superficial cortex has been widely reported. However, the investigation of the optimal electrode to effectively stimulate the nonsuperficial cortex is still lacking. In the current study, the optimal tDCS electrode montage that can deliver the maximum electric field to nonsuperficial cortical regions is investigated. Two finite element head models were used for computational simulation to determine the optimal montage for four different nonsuperficial regions: the left foot motor cortex, the left dorsomedial prefrontal cortex (dmPFC), the left medial orbitofrontal cortex (mOFC), and the primary visual cortex (V1). Our findings showed a good consistency in the optimal montage between two models, which led to the anode and cathode being attached to C4-C3 for the foot motor, F4-F3 for the dmPFC, Fp2-F7 for the mOFC, and Oz-Cz for V1. Our suggested montages are expected to enhance the overall effectiveness of stimulation of nonsuperficial cortical areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00335-2.

7.
Heliyon ; 10(3): e25136, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322884

ABSTRACT

The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate Spirulina platensis, yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums.

8.
ARKIVOC ; 22024.
Article in English | MEDLINE | ID: mdl-38361761

ABSTRACT

The plant-derived compounds furfuryl alcohol and itaconic anhydride are known to undergo a Diels-Alder reaction at room temperature and in bulk to efficiently give an alkene-containing lactone carboxylic acid. Reported here is the conversion of this substance to a variety of derivatives via hydrogenation, epoxidation, or halolactonization reactions. Most notable is the formation of a set of three related acrylate or methacrylate esters (see graphical abstract) produced by direct acylative ring opening of ether bonds using Sc(OTf)3 and (meth)acrylic anhydride. These esters are viewed as promising candidates for use as biorenewable monomers in reversible addition-fragmentation chain transfer (RAFT) polymerization reactions.

9.
Adv Mater ; 36(8): e2310250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016048

ABSTRACT

A novel approach for developing shortwave IR (SWIR) organic photodiodes (OPDs) using doped polymers is presented. SWIR OPDs are challenging to produce because of the limitations in extending the absorption of conjugated molecules and the high dark currents of SWIR-absorbing materials. Herein, it is shown that the conversion of bound polarons to free polarons by light energy can be utilized as an SWIR photodetection mechanism. To maximize the bound-polaron density and bound-to-free polaron ratio of the doped polymer film, the doping process is engineered and dopant molecules are diffused into the crystalline domain of the polymer matrix and a direct correlation between the bound-to-free polaron ratio and device performance is confirmed. The optimized double-doped SWIR OPD exhibits a high external quantum efficiency of 77 100% and specific detectivity of 1.11 × 1011 Jones against SWIR. These findings demonstrate the application potential of polarons as alternatives for Frenkel excitons in SWIR OPDs.

10.
Gastric Cancer ; 27(1): 19-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37917198

ABSTRACT

BACKGROUND: Given the uncertainties surrounding the associations in previous epidemiological studies, we conducted linear and nonlinear Mendelian randomization (MR) studies to evaluate whether body mass index (BMI) associated with gastric cancer (GC) risk in European and Korean. METHODS: Genome-wide association study-summary statistics were used from the Pan-UK Biobank, the Genetic Investigation of Anthropometric Traits consortium, the K-CHIP consortium, and BioBank Japan. BMI-associated single nucleotide polymorphisms (SNPs) were used as instrumental variables (IVs) in MR to identify the association between BMI and GC. Both linear and nonlinear MR analyses were performed. Sensitivity analyses were also conducted for individuals below or above a BMI of 24 kg/m2. RESULTS: The study used 22 and 55 SNPs as IVs for BMI in European and Korean populations, respectively. Genetically predicted BMI was positively associated with GC risk in the European population (Odds ratio per 1 kg/m2 increase; 95% CI = 1.17; 1.01-1.36 using simple median method), but no significant association was observed in the Korean population. However, the nonlinear MR identified a U-shaped association between BMI and GC in the Korean population, with both low and high BMIs associated with increased GC risk. A BMI of 24 kg/m2 presented the lowest risk. Sensitivity analyses did not yield any genome-wide significant SNPs. CONCLUSION: While MR analysis suggests a linear association between BMI and GC in those of European ancestry, nonlinear MR hints at a U-shaped association in Koreans. This suggests the association between BMI and GC risk may vary according to ethnic ancestry.


Subject(s)
Genome-Wide Association Study , Stomach Neoplasms , Humans , Body Mass Index , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Republic of Korea/epidemiology
11.
ACS Nano ; 17(23): 24374-24383, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039187

ABSTRACT

Organic vertical transistors are promising device with benefits such as high operation speed, high saturation current density, and low-voltage operation owing to their short channel length. However, a short channel length leads to a high off-current, which is undesirable because it affects the on-off ratio and power consumption. This study presents a breakthrough in the development of high-performance organic Schottky barrier transistors (OSBTs) with a low off-current by utilizing a near-ideal source electrode with a web-like Ag nanowire (AgNW) morphology. This is achieved by employing a humidity- and surface-tension-mediated liquid-film rupture technique, which facilitates the formation of well-connected AgNW networks with large pores between them. Therefore, the gate electric field is effectively transmitted to the semiconductor layer. Also, the minimized surface area of the AgNWs causes complete suppression of the off-current and induces ideal saturation of the OSBT output characteristics. p- and n-type OSBTs exhibit off-currents in the picoampere range with on/off ratios exceeding 106 and 105, respectively. Furthermore, complementary inverters are prepared using an aryl azide cross-linker for patterning, with a gain of >16. This study represents a significant milestone in the development of high-performance organic vertical transistors and verifies their applicability in organic electronic circuitry.

12.
ACS Nanosci Au ; 3(6): 462-474, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38144705

ABSTRACT

Surface chemistry of materials that host quantum bits such as diamond is an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general and nanoscale diamond (ND) in particular with silica is a potential route to integrate room temperature quantum bits into photonic devices, fiber optics, cells, or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2-35 nm thick shells of SiO2 onto carboxylic acid-rich ND cores. The diamond morphology, surface, and electronic structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions convert the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl-ether (ND-O-Si-(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed for the first time, and a maximum probing depth of ∼14 nm was calculated. XAS spectra based on the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor reinforces the chemical analysis provided by XAS. Researchers using diamond or high-pressure high temperature (HPHT) NDs and other exotic materials (e.g., silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new layered or core-shell quantum sensors by forming covalent bonds via surface alcohol groups.

13.
Nanomaterials (Basel) ; 13(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37999276

ABSTRACT

As a perfect graphene absorber without any external mirrors, we proposed asymmetric slot-assisted grating structures supporting two degenerate resonant modes of the guided-mode resonances (GMR) and the quasi-bound states in the continuum (quasi-BIC). The GMR mode functions as an internal mirror in conjunction with the background scattering, while the quasi-BIC, which is responsible for perfect graphene absorption, stems from the horizontal symmetry breaking by an asymmetric slot. By properly shifting the slot center from the grating center, the leakage rate of quasi-BIC can be controlled in such a way as to satisfy the critical coupling condition. We provide a comprehensive study on the coupling mechanism of two degenerate resonant modes for a one-port system mimicking the resonance. We also numerically demonstrated that our proposed grating structures show an excellent reflection-type modulation performance at optical wavelength ranges when doped double-layer graphene is applied. Due to the perfect absorption at the OFF state, a high modulation depth of ~50 dB can be achieved via a small Fermi level variation of ~0.05 eV. To obtain the lower insertion loss at the ON state, the higher Fermi level is required to decrease the graphene absorption coefficient.

14.
Surg Endosc ; 37(12): 9665-9675, 2023 12.
Article in English | MEDLINE | ID: mdl-37932601

ABSTRACT

BACKGROUND: There have been few studies regarding the feasibility and safety of pure single-incision laparoscopic total gastrectomy (SITG) or proximal gastrectomy (SIPG) for early gastric cancer (EGC). The purpose of this study was to analyze the surgical outcome of all consecutive SITG or SIPG cases compared with multiport laparoscopic total gastrectomy (MLTG) or proximal gastrectomy (MLPG) for EGC. METHODS: We analyzed all consecutive SITG or SIPG cases with double-tract reconstruction for ECG, including the initial case, between March 2013 and December 2021. SITG/SIPG was performed on patients without significant systemic comorbidities through a 3-4 cm vertical transumbilical incision. SITG/SIPG was matched to multiport laparoscopic total or proximal gastrectomy (MLTG/MLPG) cases performed in the same period using a 1:3 propensity score matching, including sex, body mass index (BMI), age and type of resection, year of operation, and institution as covariates. We compared perioperative clinicopathological characteristics and early postoperative morbidity within 1 month after surgery between the SITG/SIPG and MLTG/MLPG groups. RESULTS: In total, 21 patients with SITG and 15 patients with SIPG were compared with those with MLTG (n = 264) and MLPG (n = 220). No conversion to an open or multiport approach occurred in the SITG/SIPG group. After matching, operation time was similar between SITG/SIPG and MLTG/MLPG (223.9 ± 63.5 min vs 234.8 ± 68.7 min, P = 0.402). Length of stay was not significantly different between SITG/SIPG and MLTG/MLPG (11.9 ± 15.4 days vs 8.4 ± 5.0 days, P = 0.210). The average number of retrieved lymph nodes was not significantly different between SITG and MLTG (53.1 ± 16.3 vs 63.2 ± 27.5, P = 0.115), but it was significantly higher in SIPG than MLPG (59.6 ± 27.2 vs 46.0 ± 19.7, P = 0.040). The overall complication rate (30.6% vs 25.9%, P = 0.666) and Clavien-Dindo grade III or higher complication rates (13.9% vs 6.5%, P = 0.175) were not significantly different between the SITG/SIPG and MLTG/MLPG groups. CONCLUSION: Cautious adoption of SITG/SIPG procedures for EGC is feasible and safe.


Subject(s)
Laparoscopy , Stomach Neoplasms , Surgical Wound , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Propensity Score , Feasibility Studies , Treatment Outcome , Retrospective Studies , Laparoscopy/adverse effects , Laparoscopy/methods , Gastrectomy/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery
15.
Brain Stimul ; 16(5): 1377-1383, 2023.
Article in English | MEDLINE | ID: mdl-37716638

ABSTRACT

BACKGROUND: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 µA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 µA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 µA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.


Subject(s)
Deep Brain Stimulation , Dopamine , Neostriatum , Electric Stimulation , Brain
16.
Comput Biol Med ; 166: 107516, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37769460

ABSTRACT

BACKGROUND: Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS. OBJECTIVE: Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys. METHODS: We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. RESULTS: Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity. CONCLUSIONS: Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.

17.
Sci Rep ; 13(1): 12710, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543713

ABSTRACT

While zero-phase lag synchronization between multiple brain regions has been widely observed, relatively recent reports indicate that systematic phase delays between cortical regions reflect the direction of communications between cortical regions. For example, it has been suggested that a non-zero phase delay of electroencephalography (EEG) signals at the gamma frequency band between the bilateral parietal areas may reflect the direction of communication between these areas. We hypothesized that the direction of communication between distant brain areas might be modulated by multi-site transcranial alternating current stimulation (tACS) with specific phase delays other than 0° and 180°. In this study, a new noninvasive brain stimulation (NIBS) method called multi-site multi-phase tACS (msmp-tACS) was proposed. The efficacy of the proposed method was tested in a case study using a visuospatial working memory (VWM) paradigm in which the optimal stimulation conditions including amplitudes and phases of multiple scalp electrodes were determined using finite element analysis adopting phasor representation. msmp-tACS was applied over the bilateral intraparietal sulci (IPS) and showed that 80 Hz tACS with the phase for the right IPS leading that for the left IPS by 90° (= 3.125 ms) partialized VWM performance toward the right visual hemifield. The three stimulation conditions were synchronized, RL, and LR, which refers to stimulation condition with no phase lag, stimulation phase of right IPS (rIPS) leading left IPS (lIPS) by 90° and the stimulation of lIPS leading rIPS by 90°, respectively. The lateralization of VWM significantly shifted towards right visual hemifield under the RL condition compared to the synchronized and LR conditions. The shift in VWM was the result of the stimulation affecting both left and right visual hemifield trials to certain degrees, rather than significantly increasing or decreasing VWM capacity of a specific visual hemifield. Altered brain dynamics caused by msmp-tACS partialized VWM performance, likely due to modulation of effective connectivity between the rIPS and lIPS. Our results suggest that msmp-tACS is a promising NBS method that can effectively modulate cortical networks that cannot be readily modulated with conventional multi-site stimulation methods.


Subject(s)
Memory, Short-Term , Transcranial Direct Current Stimulation , Transcranial Direct Current Stimulation/methods , Parietal Lobe/physiology , Electroencephalography , Cognition
18.
J Chest Surg ; 56(6): 445-448, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37574885

ABSTRACT

A 25-year-old man returned to Seoul National University Children's Hospital with mild dyspnea on exertion. He had undergone an arterial switch operation at 1 month after birth to correct a complete transposition of the great arteries and a ventricular septal defect. When the patient was 15 years old, dilatation of the neo-aortic sinus and annulus was first identified; since then, it had gradually increased. Given the young age of the patient and the degree of aortic regurgitation (AR), which was mild to moderate, we opted to perform a valve-sparing neo-aortic root replacement with aortic valve repair. Postoperative echocardiography showed successful reductions in the sizes of the aortic sinus and annulus, with only mild AR remaining.

19.
Behav Brain Funct ; 19(1): 13, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620941

ABSTRACT

BACKGROUND: Cross-frequency phase-amplitude coupling (PAC) of cortical oscillations is observed within and across cortical regions during higher-order cognitive processes. Particularly, the PAC of alpha and gamma waves in the occipital cortex is closely associated with visual perception. In theory, gamma oscillation is a neuronal representation of visual stimuli, which drives the duty cycle of visual perception together with alpha oscillation. Therefore, it is believed that the timing of entrainment in alpha-gamma PAC may play a critical role in the performance of visual perception. We hypothesized that transcranial alternating current stimulation (tACS) with gamma waves entrained at the troughs of alpha waves would enhance the dynamic visual acuity (DVA). METHOD: We attempted to modulate the performance of DVA by using tACS. The waveforms of the tACS were tailored to target PAC over the occipital cortex. The waveforms contained gamma (80 Hz) waves oscillating at either the peaks or troughs of alpha (10 Hz) waves. Participants performed computerized DVA task before, immediately after, and 10 min after each stimulation sessions. EEG and EOG were recorded during the DVA task to assess inter-trial phase coherence (ITPC), the alpha-gamma PAC at occipital site and the eye movements. RESULTS: tACS with gamma waves entrained at alpha troughs effectively enhanced DVA, while the tACS with gamma waves entrained at alpha peaks did not affect DVA performance. Importantly, analyses of EEG and EOG showed that the enhancement of DVA performance originated solely from the neuromodulatory effects, and was not related to the modulation of saccadic eye movements. Consequently, DVA, one of the higher-order cognitive abilities, was successfully modulated using tACS with a tailored waveform. CONCLUSIONS: Our experimental results demonstrated that DVA performances were enhanced when tACS with gamma bursts entrained on alpha wave troughs were applied over the occipital cortex. Our findings suggest that using tACS with tailored waveforms, modulation of complex neuronal features could effectively enhance higher-order cognitive abilities such as DVA, which has never been modulated with conventional noninvasive brain stimulation methods.


Subject(s)
Refractive Surgical Procedures , Transcranial Direct Current Stimulation , Humans , Visual Acuity , Visual Perception , Eye Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...